
Functional Testing
Software Engineering	

Andreas Zeller • Saarland University

From Pressman, “Software Engineering – a practitioner’s approach”, Chapter 14"
and Pezze + Young, “Software Testing and Analysis”, Chapters 10-11""
Today, we’ll talk about testing – how to test software. The question is: How do we design
tests? And we’ll start with functional testing.

Project Reviewing	

• Assign labels (“R01”, “R02”, etc.) to reqs 
makes it easier to refer to them in later docs	

• Discuss alternatives thoroughly 
in particular, include consequences 	

• Looking forward to design docs 
due next Thursday; feedback within 24 hours

Functional Testing
Software Engineering	

Andreas Zeller • Saarland University

From Pressman, “Software Engineering – a practitioner’s approach”, Chapter 14"
and Pezze + Young, “Software Testing and Analysis”, Chapters 10-11""
Today, we’ll talk about testing – how to test software. The question is: How do we design
tests? And we’ll start with functional testing.

Testing

Functional Testing - 12. Dezember 2013

Testing
Again, a test. We test whether we can
evacuate 500 people from an Airbus A380
in 90 seconds. This is a test.

Even more Testing
And: We test whether a concrete wall (say,
for a nuclear reactor) withstands a plane
crash at 900 km/h. Indeed, it does.

Testing
Edgar Degas: The Rehearsal. With a
rehearsal, we want to check whether
everything will work as expected. This is a
test.

Software is manifold
We can also test software this way. But
software is not a planned linear show – it
has a multitude of possibilities. So: if it
works once, will it work again? This is the
central issue of testing – and of any
verification method.

Functional Testing - 12. Dezember 2013

Software is manifold
We can also test software this way. But
software is not a planned linear show – it
has a multitude of possibilities. So: if it
works once, will it work again? This is the
central issue of testing – and of any
verification method.

Software is manifold
The problem is: There are many possible
executions. And as the number grows…

Software is manifold
and grows…

Software is manifold
and grows…

Functional Testing - 12. Dezember 2013

Software is manifold
and grows…

Testing

Configurations

…you get an infinite number of possible
executions, but you can only conduct a
finite number of tests.

What to test?

Configurations

So, how can we cover as much behavior as
possible?

Dijkstra’s Curse

Configurations

Testing can only find the
presence of errors, 
 not their absence

But still, testing suffers from what I call
Dijkstra’s curse – a double meaning, as it
applies both to testing as to his famous
quote. Is there something that can find the
absence of errors?

Functional Testing - 12. Dezember 2013

Formal Verification

Configurations

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Areas missing might be: the operating
system, the hardware, all of the world the
system is embedded in (including humans!)

Formal Verification

Configurations

Ab
st

ra
ct

io
n

Areas missing might be: the operating
system, the hardware, all of the world the
system is embedded in (including humans!)

Functional Testing - 12. Dezember 2013

Zeller’s Variation on Dijkstra

Configurations

Ab
st

ra
ct

io
n Verification can only find

the absence of errors, 
 but never their presence

Areas missing might be: the operating
system, the hardware, all of the world the
system is embedded in (including humans!)

The Best of two Worlds

Ab
st

ra
ct

io
n

Configurations

We might not be able to cover all
Abstraction levels in all Konfigurationens,
but we can do our best to cover as much as
possible.

What to test?

Configurations

So, how can we cover as much behavior as
possible?

Functional Testing
Software Engineering	

Andreas Zeller • Saarland University

From Pressman, “Software Engineering – a practitioner’s approach”, Chapter 14"
and Pezze + Young, “Software Testing and Analysis”, Chapters 10-11""
Today, we’ll talk about testing – how to test software. The question is: How do we design
tests? And we’ll start with functional testing.

Functional Testing - 12. Dezember 2013

Functional testing is also called “black-box” testing, because we see the program as a
black box – that is, we ignore how it is being written

in contrast to structural or “white-box” testing, where the program is the base.

If the program is not the base, then what is? Simple: it’s the specification.

Testing Tactics

• Tests based on spec	

• Test covers as much 
specified behavior 
as possible	

• Tests based on code	

• Test covers as much
implemented behavior 
as possible

Functional 
“black box”

Structural 
“white box”

If the program is not the base, then what is? Simple: it’s the specification.

Functional Testing - 12. Dezember 2013

Why Functional?

• Program code not necessary	

• Early functional test design has benefits 
reveals spec problems • assesses testability • gives additional
explanation of spec • may even serve as spec, as in XP

Functional  
“black box”

Structural
“white box”

Why Functional?

• Best for missing logic defects 
Common problem: Some program logic was simply forgotten 
Structural testing would not focus on code that is not there	

• Applies at all granularity levels 
unit tests • integration tests • system tests • regression tests	

Functional  
“black box”

Structural
“white box”

Structural testing can not detect that some required feature is missing in the code"
Functional testing applies at all granularity levels (in contrast to structural testing, which
only applies to unit and integration testing)

A Challenge

class Roots {  
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 { … }	

 // Result: values for x  
 double root_one, root_two;  
}	

• Which values for a, b, c should we test? 
assuming a, b, c, were 32-bit integers, we’d have (232)3 ≈ 1028 legal inputs 
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

2,510,588,971 years, 32 days, and 20 hours to be precise.

Life Cycle of the Sun
Note that in 900 million years, due to increase of the luminosity of the sun, CO2 levels
will be toxic for plants; in 1.9 billion years, surface water will have evaporated (source:
Wikipedia on “Earth”)

Functional Testing - 12. Dezember 2013

Life Cycle of the Sun
Note that in 900 million years, due to increase of the luminosity of the sun, CO2 levels
will be toxic for plants; in 1.9 billion years, surface water will have evaporated (source:
Wikipedia on “Earth”)

None of this is crucial for the computation, though."

A Challenge

class Roots {  
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 { … }	

 // Result: values for x  
 double root_one, root_two;  
}	

• Which values for a, b, c should we test? 
assuming a, b, c, were 32-bit integers, we’d have (232)3 ≈ 1028 legal inputs 
with 1.000.000.000.000 tests/s, we would still require 2.5 billion years

Functional Testing - 12. Dezember 2013

Random Testing

• Pick possible inputs uniformly	

• Avoids designer bias 
A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)	

• But treats all inputs as equally valuable

One might think that picking random samples might be a good idea.

Infinite Monkey Theorem

Why not Random?

• Defects are not distributed uniformly	

• Assume Roots applies quadratic equation 
 
 
and fails if b2 – 4ac = 0 and a = 0	

• Random sampling is unlikely to choose 
a = 0 and b = 0

However, it is not. For one, we don’t care for bias – we specifically want to search where
it matters most. Second, random testing is unlikely to uncover specific defects.
Therefore, we go for functional testing.

Functional  
specification

Independently  
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional Testing - 12. Dezember 2013

Functional  
specification

Independently  
testable feature

identify

Testable Features

Representative
values Model

Test case
specifications

identify derive

derive

Test case

generate

• Decompose system into 
independently testable features (ITF)	

• An ITF need not correspond to units or
subsystems of the software	

• For system testing, ITFs are exposed
through user interfaces or APIs

Testable Fatures

class Roots {  
 // Solve ax2 + bx + c = 0  
 public roots(double a, double b, double c)  
 { … }	

 // Result: values for x  
 double root_one, root_two;  
}	

• What are the independently testable features?

Just one – roots is a unit and thus provides exactly one single testable feature.

Testable Fatures

• Consider a multi-function
calculator	

• What are the independently
testable features?

Every single function becomes an independently testable feature. Some functions (like
memory access, for instance) are dependent on each other, though: to retrieve a value,
you must first store it."
(Note how the calculator shows the #years required for the Roots calculation.)

Functional  
specification

Independently  
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Testable Features
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional Testing - 12. Dezember 2013

Functional
specification

Independently  
testable feature

Representative 
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Representative Values

• Try to select inputs 
that are especially 
valuable	

• Usually by 
choosing 
representatives of equivalence classes that
are apt to fail often or not at all

The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Needles in a Haystack

• To find needles, 
look systematically	

• We need to find out  
what makes needles special

Failure (valuable test case)

No failure

Systematic Partition Testing
Failures are sparse in
the space of possible

inputs ...

... but dense in some
parts of the space

If we systematically test some
cases from each part, we will

include the dense parts

Functional testing is one way of
drawing orange lines to isolate

regions with likely failures

T
he

 s
pa

ce
 o

f p
os

si
bl

e
in

pu
t

va
lu

es
	

(t
he

 h
ay

st
ac

k)

We can think of all the possible input values to a program as little boxes ... white boxes that the
program processes correctly, and colored boxes on which the program fails. Our problem is that
there are a lot of boxes ... a huge number, and the colored boxes are just an infinitesimal fraction
of the whole set. If we reach in and pull out boxes at random, we are unlikely to find the colored
ones. "
Systematic testing says: Let’s not pull them out at random. Let’s first subdivide the big bag of
boxes into smaller groups (the pink lines), and do it in a way that tends to concentrate the
colored boxes in a few of the groups. The number of groups needs to be much smaller than the
number of boxes, so that we can systematically reach into each group to pick one or a few
boxes. "
Functional testing is one variety of partition testing, a way of drawing the orange lines so that,
when one of the boxes within a orange group is a failure, many of the other boxes in that group
may also be failures. Functional testing means using the program specification to draw pink
lines. "
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Equivalence Partitioning

Input condition Equivalence classes

range one valid, two invalid 
(larger and smaller)

specific value one valid, two invalid 
(larger and smaller)

member of a set one valid, one invalid

boolean one valid, one invalid

How do we choose equivalence classes? The key is to examine input conditions from
the spec. Each input condition induces an equivalence class – valid and invalid inputs.

Functional Testing - 12. Dezember 2013

Boundary Analysis
Possible test case

• Test at lower range (valid and invalid),
at higher range(valid and invalid), and at center

How do we choose representatives rom equivalence classes? A
greater number of errors occurs at the boundaries of an
equivalence class rather than at the “center”. Therefore, we
specifically look for values that are at the boundaries – both of the
input domain as well as at the output.

Example: ZIP Code

• Input: 
5-digit ZIP code	

• Output: 
list of cities	

• What are
representative
values to test?

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Valid ZIP Codes

1. with 0 cities 
as output 
(0 is boundary value)	

2. with 1 city 
as output	

3. with many cities 
as output

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Invalid ZIP Codes
4. empty input	

5. 1–4 characters 
(4 is boundary value)	

6. 6 characters 
(6 is boundary value)	

7. very long input	

8. no digits	

9. non-character data

(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional Testing - 12. Dezember 2013

“Special” ZIP Codes

• How about a ZIP code that reads 
 
12345‘; DROP TABLE orders; SELECT
* FROM zipcodes WHERE ‘zip’ = ‘

• Or a ZIP code with 65536 characters…	

• This is security testing

Gutjahr’s Hypothesis

Partition testing 
is more effective 

than random testing.

Generally, random inputs are easier to generate, but less likely to cover parts of the
specification or the code."
See Gutjahr (1999) in IEEE Transactions on Software Engineering 25, 5 (1999), 661-667"

Functional
specification

Independently  
testable feature

Representative 
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Representative Values
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional
specification

Independently  
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing

• Have a formal model 
that specifies software behavior	

• Models typically come as	

• finite state machines and	

• decision structures

The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional Testing - 12. Dezember 2013

0

1 2
3

4 5 6

7 8

9

Finite 
State 
Machine

As an example, consider these steps modeling a product maintenance process…"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

…based on these (informal) requirements"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

Coverage Criteria

• Path coverage: Tests cover every path 
Not feasible in practice due to infinite number of paths	

• State coverage: Every node is executed 
A minimum testing criterion	

• Transition coverage: Every edge is executed 
Typically, a good coverage criterion to aim for

0

1 2
3

4 5 6

7 8

9

Transition	

Coverage

With five test cases (one color each), we can achieve transition coverage"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

Functional Testing - 12. Dezember 2013

State-based Testing

• Protocols (e.g., network communication)	

• GUIs (sequences of interactions)	

• Objects (methods and states)

Finite state machines can be used to model for a large variety of behaviors – and thus
serve as a base for testing."

Account states

empty
acctopen setup Accnt

set up
acct

deposit
(initial)

working
acct

withdrawal
(final)

dead
acct close

nonworking
acct

deposit

withdraw
balance

credit
accntInfo

Figure 14.3 State diagram for Account class (adapted from [KIR94])

Here’s an example of a finite state machine representing an Account class going through
a number of states. Transition coverage means testing each Account method once."
(From Pressman, “Software Engineering – a practitioner’s approach”, Chapter 14)"

Decision Tables
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special 
price

Tier 1 
discount

Special
price

Tier 2 
discount

Special
Price

A decision table describes under which conditions a specific outcome comes to be. This
decision table, for instance, determines the discount for a purchase, depending on
specific thresholds for the amount purchased."
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

Condition Coverage

• Basic criterion: Test every column 
“Don’t care” entries (–) can take arbitrary values	

• Compound criterion: Test every combination 
Requires 2n tests for n conditions and is unrealistic	

• Modified condition decision criterion (MCDC):
like basic criterion, but additionally, modify
each T/F value at least once 
Again, a good coverage criterion to aim for

Functional Testing - 12. Dezember 2013

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special 
price

Tier 1 
discount

Special
price

Tier 2 
discount

Special
Price

F

We modify the individual values in column 1 and 2 to generate four additional test cases
– but these are already tested anyway. For instance, the modified values in column 1
are already tested in column 3."
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special 
price

Tier 1 
discount

Special
price

Tier 2 
discount

Special
Price

T

This also applies to changing the other values, so adding additional test cases is not
necessary in this case."
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special 
price

Tier 1 
discount

Special
price

Tier 2 
discount

Special
Price

F

MCDC Criterion
Education Individual

Education account T T F F F F F F
Current purchase >

Threshold 1 – – F F T T – –
Current purchase >

Threshold 2 – – – – F F T T
Special price <
scheduled price F T F T – – – –
Special price <

Tier 1 – – – – F T – –
Special price <

Tier 2 – – – – – – F T

Out Edu
discount

Special
price

No 
discount

Special 
price

Tier 1 
discount

Special
price

Tier 2 
discount

Special
Price

F

However, if we had not (yet) tested the individual accounts, the MC/DC criterion would
have uncovered them."
(from Pezze + Young, “Software Testing and Analysis”, Chapter 14)"

Functional Testing - 12. Dezember 2013

Weyuker’s Hypothesis

The adequacy of a coverage criterion 
can only be intuitively defined.

Established by a number of studies done by E. Weyuker at AT&T. “Any explicit
relationship between coverage and error detection would mean that we have a fixed
distribution of errors over all statements and paths, which is clearly not the case”.

Learning from the past
To decide where to put most effort in testing, one can also examine the past – i.e., where
did most defects occur in the past. The above picture shows the distribution of security
vulnerabilities in Firefox – the redder a rectangle, the more vulnerabilities, and therefore
a likely candidate for intensive testing. The group of Andreas Zeller at Saarland
University researches how to mine such information automatically and how to predict
future defects.

Pareto’s Law

Approximately 80% of defects 
come from 20% of modules

Evidence: several studies, including Zeller’s own evidence :-)"

Functional
specification

Independently  
testable feature

Representative
values Model

Test case
specifications

identify derive

identify

derive

Test case

generate

Model-Based Testing
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional Testing - 12. Dezember 2013

Functional
specification

Independently
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs

• Input values enumerated in previous step	

• Now: need to take care of combinations	

• Typically, one 
uses models and 
representative 
values to generate 
test cases

The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Combinatorial Testing

IIS

Apache

MySQL Oracle

Linux

Windows OSServer

Database

Many domains come as a combination of individual inputs. We
therefore need to cope with a combinatorial explosion.

Combinatorial Testing

• Eliminate invalid combinations 
IIS only runs on Windows, for example	

• Cover all pairs of combinations 
such as MySQL on Windows and Linux	

• Combinations typically generated
automatically 
and – hopefully – tested automatically, too

Pairwise Testing
IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

IIS

Apache

MySQL Oracle

Linux

Windows IIS

Apache

MySQL Oracle

Linux

Windows

Pairwise testing means to cover every single pair of configurations

Functional Testing - 12. Dezember 2013

Testing environment

• Millions of configurations	

• Testing on dozens of different machines	

• All needed to find & reproduce problems

In practice, such testing needs hundreds and hundreds of PCs in every possible
configuration – Microsoft, for instance, has entire buildings filled with every hardware
imaginable 
Source: http://www.ci.newton.ma.us/MIS/Network.htm

Functional
specification

Independently
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Case Specs
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional
specification

Independently
testable feature

Representative
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases

• Implement test cases in code	

• Requires building scaffolding – 
i.e., drivers and stubs

The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Unit Tests

• Directly access units (= classes, modules,
components…) at their programming
interfaces	

• Encapsulate a set of tests as a single
syntactical unit	

• Available for all programming languages
(JUNIT for Java, CPPUNIT for C++, etc.)

Here’s an example for automated unit tests – the well-known JUnit"

Functional Testing - 12. Dezember 2013

Running a Test

A test case…	

1. sets up an environment for the test	

2. tests the unit	

3. tears down the environment again.

The environment provides the stubs such that a JUnit test case can work. The JUnit test
case is the driver."

Testing a URL Class

http://www.askigor.org/status.php?id=sample

Protocol Host Path Query

As an example, consider parsing a URL"

import junit.framework.Test;	
import junit.framework.TestCase;	
import junit.framework.TestSuite;	
"
public class URLTest extends TestCase {	
 private URL askigor_url;	
"
 // Create new test	
 public URLTest(String name) { super(name); }	
"
 // Assign a name to this test case	
 public String toString() { return getName(); }	
"
 // Setup environment	
 protected void setUp() {	
 askigor_url = new URL("http://www.askigor.org/" +	
 "status.php?id=sample"); }	
 // Release environment	
 protected void tearDown() { askigor_url = null;}

The setUp() and tearDown() functions set up the environment…"

 // Test for protocol (http, ftp, etc.)	
 public void testProtocol() {	
	 assertEquals(askigor_url.getProtocol(), "http");	
 }	
"
 // Test for host	
 public void testHost() {	
	 int noPort = -1;	
 assertEquals(askigor_url.getHost(), "www.askigor.org");	
	 assertEquals(askigor_url.getPort(), noPort);	
 }	
"
 // Test for path	
 public void testPath() {	
	 assertEquals(askigor_url.getPath(), "/status.php");	
 }	
"
 // Test for query part	
 public void testQuery() {	
	 assertEquals(askigor_url.getQuery(), "id=sample");	
 }

This functional test	

can be used	

as a specification!

…while the test*() methods perform the actual tests."

Functional Testing - 12. Dezember 2013

 // Set up a suite of tests	
 public static Test suite() {	
 TestSuite suite = new TestSuite(URLTest.class);	
 return suite;	
 }	
"
 // Main method: Invokes GUI	
 public static void main(String args[]) {	
 String[] testCaseName = 	
 { URLTest.class.getName() };	
 // junit.textui.TestRunner.main(testCaseName);	
 junit.swingui.TestRunner.main(testCaseName);	
 // junit.awtui.TestRunner.main(testCaseName);	
 }	
}

JUnit
JUnit comes with a GUI – and is frequently integrated in programming environments"

Functional
specification

Independently
testable feature

Representative
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Deriving Test Cases
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional  
specification

Independently  
testable feature

Representative 
values Model

Test case 
specifications

identify derive

identify

derive

Test case

generate

Systematic Functional Testing
The main steps of a systematic approach to functional program testing"
(from Pezze + Young, “Software Testing and Analysis”, Chapter 10)"

Functional Testing - 12. Dezember 2013

Summary

Functional Testing - 12. Dezember 2013

